高中数学有哪些提升成绩的方法
1、培养良好的学习兴趣。
兴趣是最好的老师。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、建立良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
3、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。
高中数学选修1-2《复数代数形式的四则运算》教案
教学目标:
知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算
过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题
情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。
教学重点:复数代数形式的除法运算。
教学难点:对复数除法法则的运用。
教学过程:
学生探究过程:
1. 复数的加减法的几何意义是什么?
2. 计算(1) (2) (3)
3. 计算:(1) (2) (类比多项式的乘法引入复数的乘法)
讲解新课:
1.复数代数形式的乘法运算
①.复数的乘法法则: 。
例1.计算(1) (2) (3)
(4)
探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?
例2.1、计算(1) (2) (3)
②共轭复数:两复数 叫做互为共轭复数,当 时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数 。
③类比 ,试写出复数的除法法则。
2.复数的除法法则:
其中 叫做实数化因子
例3.计算 , (师生共同板演一道,再学生练习)
练习:计算 ,
2.小结:两复数的乘除法,共轭复数,共轭虚数。
三、巩固练习:
1.计算(1) (2) (3)
2.若 ,且 为纯虚数,求实数 的取值。变: 在复平面的下方,求 。
小编推荐各科教学设计:
、、、、、、、、、、、、
小编推荐各科教学设计:
、、、、、、、、、、、、
最新高中数学教学教案模板通用
教学目标:
1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进
学生全面认识数学的科学价值、应用价值和文化价值。
2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:
如何建立实际问题的目标函数是教学的重点与难点。
教学过程:
一、问题情境
问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?
问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?
问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?
二、新课引入
导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。几何方面的应用(面积和体积等的最值)。
2。物理方面的应用(功和功率等最值)。
3。经济学方面的应用(利润方面最值)。
三、知识建构
例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?
说明1解应用题一般有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极
值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才
能使所用的材料最省?
变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?
说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:
S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。
例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为
多大时,才能使电功率最大?最大电功率是多少?
说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。
例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。
例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。
(1)设,生产多少单位产品时,边际成本最低?
(2)设,产品的单价,怎样的定价可使利润最大?
四、课堂练习
1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。
2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。
3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?
4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。
五、回顾反思
(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。
(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。
(3)相当多有关最值的实际问题用导数方法解决较简单。
六、课外作业
课本第38页第1,2,3,4题。
高中数学选修1-1《变化率与导数》教案
一、内容和内容解析
本节内容选自课标实验教材人教A版,是导数的起始课,主要内容有变化率问题和导数的概念。
导数是微积分中的核心概念,它有极其丰富的实际背景和广泛的应用。在本章的学习中,学生将学习导数的有关知识,体会其中蕴含的思想方法,感受其在解决实际问题中的作用,了解微积分的文化价值。
大纲教材中导数概念学习的起点是极限,这种建立概念的方式具有严密的逻辑性和系统性,但学生很难理解极限的形式化定义,因此也影响了对导数本质理解。
课标教材则不介绍极限的形式化定义及相关知识,而是通过列表计算、直观地把握函数变化趋势(蕴涵着极限的描述性定义),这种直观形象的方法中蕴含了逼近的思想,这样定义导数的优点是:
1.使学生将更多精力放在导数本质的理解上;
2.学生对逼近思想有了丰富的直观基础和一定的理解,有利于在大学的初级阶段学习严格的极限定义.
基于上述分析,本节课的教学重点是:丰富学生的感性经验,运用逼近的思想方法引导学生探索理解导数的思想及内涵。
二、目标和目标解析
1.通过分析实例,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;
2.通过动手计算培养学生观察、分析、比较和抽象概括的能力,体会逼近的思想方法; 3.经历从生活中的变化率问题抽象概括出平均变化率的过程,体会数学知识来源于生活,又服务于生活。通过概念的形成过程体会从特殊到一般的数学思想方法。
三、教学问题诊断分析
1.吹气球是很多人具有的生活经验,运动速度是学生非常熟悉的物理知识,但是如何从具体实例中抽象出共同的数学问题的本质是本节课教学的关键之一。对于吹气球问题要用函数的观点分析变化过程中的自变量和函数值,自然地引导学生建立半径r关于体积V的函数关系式;在吹气过程中要注意观察或者想象,并把实际操作转化为相应的数学语言,比如当吹入差不多大小相同的一口气时,是指气球的体积的增量相同等。
2.对于利用平均速度解决瞬时速度的问题还是第一次,很难做到一次到位,因此,“从平均变化率向瞬时变化率的过渡”是本节课的一个难点;同时,这个问题所涉及到的“逼近”思想,学生虽然在数学1“二分法”的学习中已经有所接触,但是没有经过反复练习,运用起来还是有一定难度,所以,“逼近”思想的渗透、“逼近”方法的应用将是本节课的一个难点。
基于上述分析本节课的教学难点是:帮助学生理解气球平均变化率问题和“逼近”的思想方法的应用。
四、教学支持条件分析
在教学中适时地使用信息技术,充分发挥信息技术的优势,帮助学生更好地理解概念 1.通过将计算结果实物投影,让学生积极主动地参与到课堂中来,使学生保持高水平的思维活动;
2.通过几何画板演示,使学生对概念的理解更直观,生动。
五、教学过程设计
1.创设情境、引入新课
教师介绍:微积分的创立是数学发展的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要方法和手段。在本章中,学生将通过大量的实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,那么,我们先来研究变化率的问题,引出新课。
设计意图:充分挖掘章引言的教学价值,它说明了三方面的问题:首先,简明的指出了函数和微积分的关系;其次,概述了微积分的创立史及它的地位;第三,概述本章的学习内容。
2.实例探索,引出概念
问题1:大家可能有过吹气球的经验。在吹气球的过程中,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢。这个过程中的自变量和函数值分别是谁?试建立它们之间的函数关系,从数学角度如何描述上述变化过程呢?
设计意图:通过分析生活实例,提炼数学模型,为归纳函数平均变化率概念提供具体背景。
师生活动:回忆吹气球的过程(或者让学生现场吹气球),建立半径r关于体积V的函
数关系:r(V)?
r(V2)?r(V1)
。通过观察和计算,用数据解释上述现象,并通过几何画板演示,更逼真的
V2?V1
感受上述现象。图1直观地演示了当球的体积增大(黑色部分面积变大,绿色越来越薄)时,半径增大越来越小。图2演示当A,B两点向右运动时,自变量的增量保持不变,但是平均变化率越来越小。
图1
问题2 怎样才能更准确的描述运动员的运动状态呢?
设计意图:分析实例,抽象数学模型,为归纳函数平均变化率概念提供又一重要背景,并使学生初步感受平均变化率的不足,激发进一步探求新知的欲望。
师生活动:
问题2
中的平均变化率计算公式v?
h(t2)?h(t1)
t2?t1
并借助于几何画给予直观解释。
3.分析归纳,得到概念
问题3 对比问题1和问题2中的平均变化率计算关系式,他们有什么共同特点?对于一般函数f(x),如何计算其平均变化率?
设计意图:让学生结合两个实例,对比、分析,抽象概括出一般形式,经历由特殊到一般的数学过程。
师生活动:学生讨论,分析,归纳根据前面的实例,得到结论:
f(x2)?f(x1)称为函数f(x)从x1到x2的平均变化定义:一般地,函数y=f(x)中,式子21f(x2)?f(x1)?y率,则 ?
x2?x1?x
其中△x 、△ y 的值可正、可负,但△x值不能为0, △ y 的值可以为0。
x?x
若函数f(x)为常函数时, △ y =0。 变式:
f(x)?f(x)f(x?? x)?f(x)
?
x?x? x
2
1
1
1
2
1
。
21
?问题4 观察函数f(x)的平均变化率,结合直线的斜率分析平均
f(x)?f(x)
x2?x1
?y?x
变化率的几何意义是什么?
图4
设计意图:从几何角度得到平均变化率的几何意义,体现数形结合的思想。
r(v0??v)?r(v0)。 ?v?0?vlim
问题8 对于一般函数f(x)在x?x0处的瞬时变化率如何表示呢?
设计意图:引导学生舍弃具体问题的实际意义,抽象得出函数在某点处的瞬时变化率,即导数,帮助学生实现认识上的飞跃。
师生活动:在前面两个问题的基础上提出导数的概念:
一般地,函数f(x)在x?x0处的瞬时变化率是:
lim
y?|f?(x0)?lim称为函数 y = f (x) 在 x = x0 处的导数, 记作 f?(x0)或 x ?x ,即:?x?00?x?0f(x?Δx)?f(x) ?y?lim? x? x00 ?x?0 f(x0?Δx)?f(x0) .? x
5.自主归纳,提升认识
问题9:通过本节课的学习你有哪些收获?
设计意图:通过小结帮助学生自行构建知识体系,理清知识脉络,更好地理解本节课的知识和思想方法。
师生活动:在学生自主小结的基础上揭示函数思想、逼近思想方法,概念形成过程中的抽象概括。
六、目标检测设计
1.将原油精炼为汽油、柴油、塑料等不同产品,需要对原油进行冷却和加热。如果
2?在第x h时候,原油温度(单位:c)为f(x)?x?7x?15(0?x?8)。
(1)计算第2h和第6h时,原油温度的瞬时变化率,并说明它的意义。
(2)计算第3h和第5h时,原油温度的瞬时变化率,并说明它的意义。
2.已知一个物体运动的位移(m)与时间t(s)满足关系S(t)=-2t2+5t
(1)求物体第5秒和第6秒的瞬时速度。
(2)求物体在t时刻的瞬时速度。
(3)求物体t时刻运动的加速度,并判断物体作什么运动?
设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律。
高中数学选修1-1《导数的计算》教案
【学习要求】1.能根据定义求函数y=c,y=x,y=x2,y=1x的导数.
2.能利用给出的基本初等函数的导数公式求简单函数的导数.
【学法指导】1.利用导数的定义推导简单函数的导数公 式,类推 一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培 养归纳、探求规律的能力,提高学习兴趣.
2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系,如公式6是公式5的特例,公式8是公式7的特例.公式5与公式7中ln a的位置的不同等.
1.几个常用函数的导数
原函数 导函数
f(x)=c f ′(x)=
f(x)=x f′(x)=
f(x)=x2 f′(x)=
f(x)=1x
f′(x)=
f(x)=x
f′(x)=
2.基本初等函数的导数公式
原函数 导函数
f(x)=c f′(x)=
f(x)=xα(α∈Q*) f′(x)=
f(x)=sin x f′(x)=
f(x)=cos x f′(x)=
f(x)=ax f′(x)= (a>0)
f(x)=ex f′ (x)=
f(x)=logax
f′(x)= (a>0且a≠1)
f(x)=ln x f′(x)=
探究点一几个常用函数的导数
问题1怎样 利用定义求函数y=f(x)的导数?
问题2利用 定义求下列常用函数的导数:(1)y=c(2)y=x(3)y=x2(4)y=1x(5)y=x
问题3导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度.(1)函数y =f(x)=c(常数)的导数的物理意义是什么?
(2)函数y=f(x)=x的导数的物理意义呢?
问题4画出函数y=1x的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.
探究点二基本初等函数的导数公式
问题1利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?
问题2你能发现8个基本初等函数的导数公式之间的联系吗?
例1求下列函数的导数:(1)y=sinπ3;(2)y=5x;(3)y=1x3;(4)y=4x3; (5)y =log3x.
跟踪1求下列函数的导数:(1)y=x8;(2)y=(12)x;(3)y=xx;(4)y=
例2判断下列计算是否正确.
求y=cos x在x=π3处的导数,过程如下:y′| = ′=-sin π3=-32.
跟踪2求函数f(x)=13x在x=1处的导数.
探究点三导数公式的综合应用
例3已知直线x-2y-4=0与抛物线 y2=x相交于A、B两点,O是坐标原点,试在抛物线的弧 上求一点P,使△ABP的面积最大.
跟踪3点P是曲线y=ex上任意一点,求点P到直线y=x的最小距离.
【达标检测】
1.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;
③若y=1x2,则y′=-2x-3;④若f(x)=3x,则f′(1)=3.其中正确的个数是 ()
A.1 B.2 C.3 D.4
2.函数f(x)=x,则f′(3)等于 ()
A.36 B.0 C.12x D.32
3.设正弦曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是 ()
A.[0,π4]∪[3π4,π) B.[0,π) C.[π4,3π4] D.[0,π4]∪[π2,3π4]
4.曲线y=ex在点(2,e2)处的切线与坐标轴所围三角形的面积为________.
频道小编推荐:
频道小编推荐:
高中数学选修1-1《椭圆》教案
教学准备
教学目标
教学目标:1.掌握求适合条件的椭圆的标准方程的方法.
2.理解椭圆的比值定义,椭圆的准线的定义.
3.掌握椭圆的准线方程并能运用准线方程判定椭圆的焦点位置.
教学重难点
教学重点:椭圆的比值定义,椭圆的准线的定义及其运用.
教学难点:椭圆的准线的运用.liuxue86.com
教学过程
教学过程:
一、 知识回顾:
求椭圆16x2+9y2=144中x,y的范围,长轴和短轴长、离心率、半焦距的大小、焦点及顶点坐标。
二、 课堂新授:
例1. 求适合下列条件的椭圆的标准方程:
(1) 经过点P(-3,0)、Q(0,-2);
(2) 长轴的长等于20,离心率等于.
解:(1)由椭圆的几何性质可知,点P、Q分别是椭圆长轴和短轴的一个端点.
于是得a=3,b=2.
又长轴在x轴上,所以椭圆的标准方程为
(2) 由已知,2a=20,e=,
a=10,c=6.
b2=102-62=64.
由于椭圆的焦点可能在x轴上,也可能在y轴上,所以所求椭圆的标准方程为
例1. 如图,我国发射的第一颗人造卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆。已知它的近地点A(离地面最近的点)距地面439KM。远地点B(离地面最远的点)距地面2384km,并且F2、A、B在同一直线上,地球半径约为6371km.求卫星运行的轨道方程(精确到1km).
点评:当点M与一个定点的距离和它到一条定直线的距离的比是常数e=(0
一、 随堂练习:P102 练习4,6
二、 课堂小结:
五、课后作业:P103习题8.24,5,6,7
频道小编推荐:
频道小编推荐:
高中数学选修1-2《独立性检验的基本思想及其初步应用》教案
教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.
教学重点:理解独立性检验的基本思想及实施步骤.
教学难点:了解独立性检验的基本思想、了解随机变量 的含义.
教学过程:
教学过程:
一、复习准备:
独立性检验的基本步骤、思想
二、讲授新课:
1. 教学例1:
例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?
① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;
第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;
第三步:由学生计算出 的值;
第四步:解释结果的含义.
② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.
2. 教学例2:
例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:
喜欢数学课程不喜欢数学课程总计
男3785122
女35143178
总计72228300
由表中数据计算得到 的观察值 . 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?
(学生自练,教师总结)
强调:①使得 成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;
②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;
③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.
不健康健康总计
不优秀41626667
优秀37296333
三、课时小结:独立性检验的方法、原理、步骤
四、巩固练习:
某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?
五、课外作业 课时练习
六、板书设计
频道小编推荐:
频道小编推荐:
高中数学选修1-1《充分条件与必要条件》教案
教学准备
教学目标
运用充分条件、必要条件和充要条件
教学重难点
运用充分条件、必要条件和充要条件
教学过程
一、基础知识
(一)充分条件、必要条件和充要条件
1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。
3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断
1若成立则A是B成立的充分条件,B是A成立的必要条件。
2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。
3.若成立则A、B互为充要条件。
证明A是B的充要条件,分两步:liuxue86.com
(1)充分性:把A当作已知条件,结合命题的前提条件推出B;
(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
二、范例选讲
例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?
(1)在△ABC中,p:A>B q:BC>AC;
(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;
(3)在△ABC中,p:SinA>SinB q:tanA>tanB;
(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
解:(1)p是q的充要条件 (2)p是q的充分不必要条件
(3)p是q的既不充分又不必要条件 (4)p是q的充分不必要条件
练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )
A、x<0 B、x<0或x>4 C、│x-1│>1 D、│x-2│>3
例2.填空题
(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的 条件.
答案:(1)充分条件 (2)充要、必要不充分 (3)A=> B <=> C=> D故填充分。
练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )
A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分又不必要条件
例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.
证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,
由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;
再证充分性即:xy≥0则|x+y|=|x|+∣y∣
若xy≥0即xy>0或xy=0
下面分类证明
(Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣
(Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣
(Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣
综上所述: |x+y|=|x|+∣y∣
∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.
例5.已知抛物线y=-x2+mx-1 点A(3,0) B(0,3),求抛物线与线段AB有两个不同交点的充要条件.
解:线段AB:y=-x+3(0≤x≤3)-----------(1)
抛物线: y=-x2+mx-1---------------(2)
(1)代入(2)得:x2-(1+m)x+4=0--------(3)
抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.
频道小编推荐:
频道小编推荐:
高中数学选修1-1《全称量词与存在量词》教案
一、选择题(每小题3分,共18分)
1.(2014•烟台高二检测)对下列命题的否定说法错误的是()
A.p:能被2整除的数是偶数; p:存在一个能被2整除的数不是偶数
B.p:有些矩形是正方形; p:所有的矩形都不是正方形
C.p:有的三角形为正三角形; p:所有的三角形不都是正三角形
D.p:∃x0∈R, +x0+2≤0; p:∀x∈R,x2+x+2>0
【解析】选C.“有的三角形为正三角形”为特称命题,其否定为全称命题:所有的三角形都不是正三角形,故选项C错误.
2.关于命题p:“∀x∈R,x2+1≠0”的叙述正确的是()
A. p:∃x0∈R, +1≠0
B. p:∀x∈R,x2+1=0
C.p是真命题, p是假命题
D.p是假命题, p是真命题
【解析】选C.命题p:“∀x∈R,x2+1≠0”的否定是“∃x 0∈R, +1=0”.所以p是真命题, p是假命题.
3.(2014•广州高二检测)命题“∀x>0,都有x2-x≤0”的否定是()
A.∃x0>0,使得 -x0≤0
B.∃x0>0,使得 -x0>0
C.∀x>0,都有x2-x>0
D.∀x≤0,都有x2-x>0
【解析】选B.由含有一个量词的命题的否定易知选B.
【变式训练】已知命题p:∃x0∈R, +1<0,则 p是()
A.∃x0∈R, +1≥0 B.∀x∈R,x2+1≥0
C.∃x0∈R, +1≠0 D.∀x∈R,x2+1<0
【解析】选B.命题p是一个特称命题,其否定为全称命题, p:∀x∈R,x2+1≥0.
4.已知命题p:“对∀x∈R,∃m∈R,使4x+2x•m+1=0”.若命题 p是假命题,则实数m的取值范围是()
A.-2≤m≤2 B.m≥2
C.m≤-2 D.m≤-2或m≥2
【解题指南】根据p与 p的真假性相反知p是真命题,然后求m的取值范围即可.
【解析】选C.因为 p是假命题,所以p是真命题.X kB1.cOM
所以m=- ≤-2.
5.已知命题p:∀x∈R,2x2+2x+ <0;命题q:∃x0∈R,sinx0-cosx0= ,则下列判断正确的是()
A.p是真命题 B.q是假命题
C. p是假命题 D. q是假命题
【解析】选D.因为2x2+2x+ = (2x+1)2≥0,所以p是假命题.又因为sinx-cosx= sin ,所以 ∃x0= ,使sinx0-cosx0= ,故q是真命题,故选D.
6.(2013•衡水高二检测)已知p:存在x0∈R,m +1≤0;q:对任意x∈R,x2+mx+1>0,若p或q为假,则实数m的取值范围为()
A.m≤-2 B.m≥2
C.m≥2或m≤-2 D.-2≤m≤2
【解题指南】先判断命题p,q的真假,转化为含有一个量词的命题的否定求参数的取值范围,再求交集.
【解析】选B.由p或q为假,得p,q都是假命题,从而 p, q都是真命题.
p:对任意x∈R,mx2+1>0成立,得m≥0;
q:存在x0∈R, +mx0+1≤0成立,得Δ=m2-4≥0,
解得m≥2或m≤-2.
综上所述,m≥2为所求.
二、填空题(每小题4分,共12分)
7.(2014•深圳高二检测)命题“同位角相等”的否定为,否命题为________________________.
【解析】全称命题的否定是特称命题,“若p,则q”的否命题是“若 p,则 q”.故否定为:有的同位角不相等.否命题为:若两个角不是同位角,则它们不相等.
答案:有的同位角不相等若两个角不是同位角,则它们不相等
【误区警示】解答本题易混淆命题的否定与否命题的概念,命题的否定只否定结论,而否命题既否定条件又否定结论.
8.(2014•长春高二检测)设命题p:∀x∈R,x2+ax+2<0,若 p为真,则实数a的取值范围是___________________.
【解析】因为 p为真,又 p:∃x0∈R, +ax0+2≥0,而函数f(x)=x2+ax+2开口向上,所以a∈R.
答案:a∈R
9.命题“∃x0,y0<0, + ≥2x0y0”的否定为 ______ ________________.
【解析】命题是特称命题,其 否定是全称命题,否定为:∀x,y<0,x2+y2<2xy.
答案:∀x,y<0,x2+y2<2xy
三、解答题(每小题10分,共20分)
10.(2014•日照高二检测)已知p:∀x∈R,2x>m(x2+1),q:∃x0∈R, +2x0-m-1=0,且p∧q为真,求实数m的取值范围.
【解析】2x>m(x2+1)可化为mx2-2x+m<0.
若p:∀x∈R,2x>m(x2+1)为真,
则mx2-2x+m<0对任意的x∈R恒成立.
当m=0时,不等式可化为-2x<0,显然不恒成立;
当m≠0时,有m<0,Δ=4-4m2<0,
所以m<-1.[来
若q:∃x0∈R, +2x0-m-1=0为真,
则方程 +2x0-m-1=0有实根,
所以Δ=4+4(m+1)≥0,所以m≥-2.
又p∧q为真,故p,q均为真命题.
所以m<-1且m≥-2,
所以-2≤m<-1.
11.写出下列命题的否定,判断其真假并给出证明.
命题:已知a=(1,2),存在b=(x,1)使a+2b与2a-b平行.
【解题指南】先写出否 定,再判真假,最后给出证明.
【解析】命题的否定:已知a=(1,2),则对任意的b=(x,1),a+2b与2a-b都不平行,是一个假命题.
证明如下:假设存在b=(x,1)使a+2b与2a-b平行,则a +2b=(1,2)+2(x,1)=(2x+1,4).
2a-b=2(1,2)-(x,1)=(2-x,3).
因为a+2b与2a-b平行,
所以存在λ∈R,使得a+2b=λ(2a-b).
即(2x+1,4)=λ(2-x,3).
所以 ⇔2x+1= (2-x).
解得x= .
这就是说存在b= 使a+2b与2a-b平行,故已知命题为真命题,其否定为假命题.
(30分钟50分)
一、选择题(每小题4分,共16分)
1.(2012•湖北高考)命题“存在一个无理数,它的平方是有理数”的否定是()
A.任意一个有理数,它的平方是有理数
B.任意一个无理数,它的平方不是有理数
C.存在一个有理数,它的平方是有理数
D.存在一个无 理数,它的平方不是有理数
【解析】选B.特称命题的否定是全称命题,将存在量词改为全称量词,然后再否定结论即可.
2.已知命题p:∀n∈N,2n >1000,则 p为()
A.∀n∈N,2n≤1000 B.∀n∈N,2n<1000
C.∃n0∈N, ≤1000 D.∃n0∈N, <1000
【解析】选C.全称命题的否定是特称命题,故 p:∃n0∈N, ≤1000.
【举一反三】若本题中的命题p换为“∃n0∈N, >1000”,其他条件不变,结论又如何呢?
【解析】选A.将存在量词“∃”改为全称量词“∀”, 然后否定结论即可, p:
∀n∈N,2n≤1000.
3.(2014•大连高二检测)命题p:x=2且y=3,则 p为()
A.x≠2或y≠3 B.x≠2且y≠3
C.x=2或y≠3 D.x≠2或y= 3
【解题指南】“且”的否定为“或”,然后否定结论即可.
【解析】选A.将“且”改为“或”,将x=2与y=3都否定即为原命题的否定, p为:x≠2或y≠3.
4.下列关于命题p:“∃x0∈R, =sinx0”的叙述正确的是()
A. p:∃x0∈R, ≠sinx0
B. p:∀x∈R, =sinx
C.p是真命题, p是假命题
D.p是假命题, p是真命题
【解析】选C.命题p:“∃x0∈R, =sinx0”的否定是 p:∀x∈R, ≠sinx.
当x=0时, =sinx,所以p是真命题, p是假命题.
二、填空题(每小题5分,共10分)
5.命题“对任意x∈R,|x-2|+|x-4|>3”的否定是.
【解析】根据全称命题的否定形式写.
答案:存在x0∈R,|x0-2|+|x0-4|≤3
6.(2014•兰州高二检测)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R, +2ax0+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是_______.
【解析】命题p:“∀x∈[1,2],x2-a≥0”为真,则a≤x2,x∈[1,2]恒成立,所以a≤1;
命题q:“∃x0∈R, +2ax0+2-a=0”为真,则“4a2-4(2-a)≥0,即a2+a-2≥0”,解得a≤-2或a≥1.
若命题“p且q”是真命题,则实数a的取值范围是{a|a≤-2或a=1}.
答案:{a|a≤-2或a=1}
【变式训练】已知命题p:∃x0∈R, +2ax0+a=0.若命题p是假命题,则实数a的取值范围是.
【解析】方法一:若命题p:∃x0∈R, +2ax0+a=0是真命题,则Δ=(2a)2-4a≥0,即a(a-1)≥0.
因为命题p是假命题,所以a(a-1)<0,解得0
方 法二:依题意,命题 p:∀x∈R,x2+2ax+a≠0是真命题,则Δ=(2a)2-4a<0,即a(a-1)<0,解得0
答案:(0,1)
三、解答题(每小题12分,共24分)
7.写出下列命题的否定,并判断其真假.
(1)p:不论m取何实数,方程x2+x-m=0必有实数根.
(2)q:存在一个实数x,使得x2+x+1≤0.
(3)r:等圆的面积相等,周长相等.
(4)s:对任意角α,都有sin2α+cos2α=1.
【解析】(1)这一命题可以表述为p:“对所有的实数m,方程x2+x-m=0有实数根”,其否定形式是 p:“存在实数m0,使得x2+x-m0=0没有实数根”.
注意到当Δ=1+4m0<0时,即m0<- 时,一元二次方程没有实数根,所以 p是真命题.
(2)这一命题的否定形式是 q :“对所有实数x,都有x2+x+1>0”;利用配方法可以证得 q是一个真命题.
(3)这一命题的否定形式是 r:“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知 r是一个假命题.
(4)这一命题的否定形式是 s:“存在α0∈R,有sin2α0+cos2α0≠1”.由于命题s是真命题,所以 s是假命题.
8.(2014•汕头高二检测)设p:“∃x0∈R, -ax0+1=0”,q:“函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞)”,若“p∨q”是假命题,求实数a的取值范围.
【解析】由 -ax0+1=0有实根,
得 Δ=a2-4≥0⇒a≥2或a≤-2.
因此命题p为真命题的范围是a≥2或a≤-2.
由函数y=x2-2ax+a2+1在x∈[0,+∞)的值域为[1,+∞),得a≥0.
因此命题q为真命题的范围是a≥0.
根据p∨q为假命题知:p,q均是假命题,p为假命题对应的范围是-2
这样得到二者均为假命题的范围就是 ⇒-2
频道小编推荐:
频道小编推荐:
高中数学教学提升范文
一、高中数学教学的基本现状
高中数学的内容繁多,知识体系复杂。数学学习是一个长期的积累过程,加上学生在高中阶段课业较多,学习任务重,数学内容又比较枯燥,部分知识点难于理解,使得高中学数学的教学工作面临着艰难的选择。大部分教师还依据沿用传统的教学方法,注重学生的学习成绩,为高考做准备。而新课改的要求是需要更加注重学生综合素质的培养,真正做到素质教育,关心学生的学习过程而不是成绩的好坏。所以,就新课改的需求,高中数学教学的质量急需提高。
二、提高高中教学质量的对策
为满足新课改的要求,提高学生的综合素质,提高数学教学质量,需要的改进措施如下:
1.加强数学教师和学生的沟通与交流
高中阶段的学生已经形成自己的人生观和价值观,他们对待事物有自己的看法,包括学习的重心如何选择。所以,这种情况下,教师的引导尤为重要。数学教学内容的枯燥,理论性比较强,使得一些学生对数学学习产生厌倦心理,有的甚至会放弃学习。教师要时刻关注学生的动态,了解学生的想法,与学习态度消极的学生进行交流,加强他们对数学学习的信念,对有进步的学生给予鼓励,增加自信心。通过与学生的交流,深知他们的所需所想,做到因材施教,适时地改进教学内容,使学生对数学产生兴趣。
2.数学教师要提高自身的能力
高中数学教师要不断研究教材内容,尤其是新的知识,根据教材内容,结合新课改的创新理念,改进自己的教学模式,使学生真正地参与到数学教学过程中。在教学过程中不断总结经验,与其他教师分享交流,吸纳更多好的建议,学校也应该经常组织数学教研培训,提高教师的专业能力,培养教师的教学精神,用自己的热情感染学生,使学生爱上数学课堂。
3.营造活跃的数学课堂氛围
在有效的课堂时间里,学生和教师都希望掌握更多的知识。而面对逻辑性很强的数学原理,如何使学生有效地吸收和掌握,是教师需要深入研究的课题。要在课堂教学中让学生真正地参与其中,教师与学生做到有效的互动,通过问答方式或是知识点相关的小故事讲解,来激发学生的好奇心和求知欲,引起学生的兴趣点,提高学生学习数学的主动性。
4.数学教学情景化
在数学教学中,教师要积极运用各种教学资源来丰富数学课堂,如多媒体的使用,对于一些抽象、枯燥的知识点,教师可以在讲解时,将课程内容做成课件,使内容生动具体,易于理解;也可以让学生分成小组,结合实际生活案例进行研究讨论,加深对知识的理解,从而提高学生的观察能力和分析能力,促使学生积极思考,研究数学知识的深奥,丰富学生的数学学习生活,提高教学质量。提高数学教学质量是高中数学教学的重要研究课题,对数学教师的专业能力和教学水平来说是一个挑战,同时也对学生综合素质的培养,逻辑思维能力的提高起着至关重要的作用。
高中数学选修1-1《双曲线》教案
教学准备
教学目标
教学目标: 1.能用与椭圆对比的方法分析并掌握双曲线的范围、对称性、顶点等几何性质;
2.掌握双曲线的渐近线的概念和证明;
3.明确双曲线标准方程中a、b、c的几何意义;
4.能根据双曲线的几何性质确定双曲线的方程, 并解决简单问题.
教学重难点
教学重点: 双曲线的几何性质
教学难点: 双曲线的渐近线
教学过程
教学过程:
一、知识回顾:
1. 双曲线的标准方程;
2. 椭圆的几何性质及其研究方法.
二、课堂新授:
1. 要求学生按照研究椭圆几何性质的方法, 研究双曲线
的几何性质.
(1) 范 围: 双曲线在不等式x≤-a与x≥a所表示的区域内.
(2) 对称性: 双曲线关于每个坐标轴和原点都是对称的. 这时, 坐标轴是双曲线的对称轴, 原点是双曲线的对称中心. 双曲线的对称中心叫做双曲线的中心.
(3) 顶 点: 双曲线和它的对称轴有两个交点, 它们叫做双曲线的顶点.
顶点坐标A1 (-a, 0), A2 (a, 0)
① 线段A1A2叫做双曲线的实轴, 它的长等于2a, a叫做双曲线的实半轴长.
② 双曲线与y轴没有交点, 取点B1 (0,-b)、 B2 (0, b), 线段B1B2叫做双曲线的虚轴, 它的长等于2b, b叫做双曲线的虚半轴长.
(4) 离心率: 双曲线的焦距与实轴长的比e = , 叫做双曲线的离心率.
双曲线的离心率的取值范围是 (1, +∞).
2. 双曲线的渐近线
(1) 观察: 经过A2、A1作y轴的平行线x = ±a, 经过B2、B1作x轴的平行线y = ±b, 四条直线围成一个矩形. 矩形的两条对角线所在直线的方程是y =±x, 观察可知: 双曲线的各支向外延伸时, 与这两条直线逐渐接近.
(2) 证明: 取双曲线在第一象限内的部分进行证明. 这一部分的方程可写为
最新高中数学教学教案模板通用
教学目标:
1、理解并掌握曲线在某一点处的切线的概念;
2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;
3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化
问题的能力及数形结合思想。
教学重点:
理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。
教学难点:
用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。
教学过程:
一、问题情境
1、问题情境。
如何精确地刻画曲线上某一点处的变化趋势呢?
如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。
如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。
因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。
2、探究活动。
如图所示,直线l1,l2为经过曲线上一点P的两条直线,
(1)试判断哪一条直线在点P附近更加逼近曲线;
(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?
(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?
二、建构数学
切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。
思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
三、数学运用
例1 试求在点(2,4)处的切线斜率。
解法一 分析:设P(2,4),Q(xQ,f(xQ)),
则割线PQ的斜率为:
当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;
当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。
从而曲线f(x)=x2在点(2,4)处的切线斜率为4。
解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。
练习 试求在x=1处的切线斜率。
解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:
当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。
小结 求曲线上一点处的切线斜率的一般步骤:
(1)找到定点P的坐标,设出动点Q的坐标;
(2)求出割线PQ的斜率;
(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。
思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?
解 设
所以,当无限趋近于0时,无限趋近于点处的切线的斜率。
变式训练
1。已知,求曲线在处的切线斜率和切线方程;
2。已知,求曲线在处的切线斜率和切线方程;
3。已知,求曲线在处的切线斜率和切线方程。
课堂练习
已知,求曲线在处的切线斜率和切线方程。
四、回顾小结
1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。
2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。
五、课外作业
最新高中数学教学教案模板通用
一、教学目标
【知识与技能】
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
二、教学重难点
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。
小编推荐各科教学设计:
、、、、、、、、、、、、
高中数学选修1-1《全称量词与存在量词》教案
导学目标:
1.了解逻辑联结词“或、且、非”的含义.
2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.
自主梳理
1.逻辑联结词
命题中的或,且,非叫做逻辑联结词.“p且q”记作p∧q,“p或q”记作p∨q,“非p”记作綈p.
2.命题p∧q,p∨q,綈p的真假判断
p q p∧q p∨q 綈p
真 真 真 真 假
真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
3.全称量词与存在量词
(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x∈M,p(x),它的否定∃x∈M,綈p(x).
(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题,可用符号简记为∃x∈M,p(x),它的否定∀x∈M,綈p(x).
自我检测
1.命题“∃x∈R,x2-2x+1<0”的否定是()
A.∃x∈R,x2-2x+1≥0 B.∃x∈R,x2-2x+1>0
C.∀x∈R,x2-2x+1≥0 D.∀x∈R,x2-2x+1<0
答案C
解析因要否定的命题是特称命题,而特称命题的否定为全称命题.对x2-2x+1<0的否定为x2-2x+1≥0,故选C.
2.若命题p:x∈A∩B,则綈p是()
A.x∈A且x B B.x A或x B
C.x A且x B D.x∈A∪B
答案B
解析∵“x∈A∩B”⇔“x∈A且x∈B”,
∴綈p:x A或x B.
3.(2011•大连调研)若p、q是两个简单命题,且“p∨q”的否定是真命题,则必有()
A.p真q真 B.p假q假
C.p真q假 D.p假q真
答案B
解析∵“p∨q”的否定是真命题,
∴“p∨q”是假命题,∴p,q都假.
4.(2010•湖南)下列命题中的假命题是()
A.∀x∈R,2x-1>0
B.∀x∈N*,(x-1)2>0
C.∃x∈R,lg x<1
D.∃x∈R,tan x=2
答案B
解析对于B选项x=1时,(x-1)2=0.
5.(2009•辽宁)下列4个命题:
p1:∃x∈(0,+∞),(12)x<(13)x;
p2:∃x∈(0,1),log12x>log13x;
p3:∀x∈(0,+∞),(12)x>log12x;
p4:∀x∈(0,13),(12)x
其中的真命题是()
A.p1,p3 B.p1,p4
C.p2,p3 D.p2,p4
答案D
解析取x=12,则log12x=1,log13x=log32<1,
p2正确.
当x∈(0,13)时,(12)x<1,而log13x>1,p4正确.
探究点一判断含有逻辑联结词的命题的真假
例1 写出由下列各组命题构成的“p∨q”、“p∧q”、“綈p”形式的复合命题,并判断真假.
(1)p:1是素数;q:1是方程x2+2x-3=0的根;
(2)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;
(3)p:方程x2+x-1=0的两实根的符号相同;q:方程x2+x-1=0的两实根的绝对值相等.
解题导引正确理解逻辑联结词“或”、“且”、“非”的含义是解题的关键,应根据组成各个复合命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.其步骤为:①确定复合命题的构成形式;②判断其中简单命题的真假;③根据其真值表判断复合命题的真假.
解(1)p∨q:1是素数或是方程x2+2x-3=0的根.真命题.
p∧q:1既是素数又是方程x2+2x-3=0的根.假命题.
綈p:1不是素数.真命题.
(2)p∨q:平行四边形的对角线相等或互相垂直.假命题.
p∧q:平行四边形的对角相等且互相垂直.假命题.
綈p:有些平行四边形的对角线不相等.真命题.
(3)p∨q:方程x2+x-1=0的两实根的符号相同或绝对值相等.假命题.
p∧q:方程x2+x-1=0的两实根的符号相同且绝对值相等.假命题.
綈p:方程x2+x-1=0的两实根的符号不相同.真命题.
变式迁移1(2011•厦门月考)已知命题p:∃x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1
①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题,其中正确的是()
A.②③ B.①②④
C.①③④ D.①②③④
答案D
解析命题p:∃x∈R,使tan x=1是真命题,命题q:x2-3x+2<0的解集是{x|1
∴①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;
③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题.
探究点二全(特)称命题及真假判断
例2 判断下列命题的真假.
(1)∀x∈R,都有x2-x+1>12.
(2)∃α,β使cos(α-β)=cos α-cos β.
(3)∀x,y∈N,都有x-y∈N.
(4)∃x0,y0∈Z,使得2x0+y0=3.
解题导引判定一个全(特)称命题的真假的方法:
(1)全称命题是真命题,必须确定对集合中的每一个元素都成立,若是假命题,举反例即可.
(2)特称命题是真命题,只要在限定集合中,至少找到一个元素使得命题成立.
解(1)真命题,
因为x2-x+1=(x-12)2+34≥34>12.
(2)真命题,如α=π4,β=π2,符合题意.
(3)假命题,例如x=1,y=5,但x-y=-4 N.
(4)真命题,例如x0=0,y0=3符合题意.
变式迁移2(2011•日照月考)下列四个命题中,其中为真命题的是()
A.∀x∈R,x2+3<0
B.∀x∈N,x2≥1
C.∃x∈Z,使x5<1
D.∃x∈Q,x2=3
答案C
解析由于∀x∈R都有x2≥0,因而有x2+3≥3,所以命题“∀x∈R,x2+3<0”为假命题;
由于0∈N,当x=0时,x2≥1不成立,所以命题“∀x∈N,x2≥1”为假命题;
由于-1∈Z,当x=-1时,x5<1,所以命题“∃x∈Z,使x5<1”为真命题;
由于使x2=3成立的数只有±3,而它们都不是有理数,因此没有任何一个有理数的平方能等于3,所以命题“∃x∈Q,x2=3”为假命题.
探究点三全称命题与特称命题的否定
例3 写出下列命题的“否定”,并判断其真假.
(1)p:∀x∈R,x2-x+14≥0;
(2)q:所有的正方形都是矩形;
(3)r:∃x∈R,x2+2x+2≤0;
(4)s:至少有一个实数x,使x3+1=0.
解题导引(1)全(特)称命题的否定与一般命题的否定有着一定的区别,全(特)称命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可.
(2)要判断“綈p”命题的真假,可以直接判断,也可以判断p的真假.因为p与綈p的真假相反且一定有一个为真,一个为假.
解(1)綈p:∃x∈R,x2-x+14<0,这是假命题,
因为∀x∈R,x2-x+14=(x-12)2≥0恒成立,即p真,所以綈p假.
(2)綈q:至少存在一个正方形不是矩形,是假命题.
(3)綈r:∀x∈R,x2+2x+2>0,是真命题,这是由于∀x∈R,x2+2x+2=(x+1)2+1≥1>0成立.
(4)綈s:∀x∈R,x3+1≠0,是假命题,这是由于x=-1时,x3+1=0.
变式迁移3(2009•天津)命题“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.对任意的x∈R,2x≤0
D.对任意的x∈R,2x>0
答案D
解析本题考查全称命题与特称命题的否定.原命题为特称命题,其否定应为全称命题,而“≤”的否定是“>”,所以其否定为“对任意的x∈R,2x>0”.
转化与化归思想的应用
例 (12分)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x20+2ax0+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
【答题模板】
解由“p且q”是真命题,
则p为真命题,q也为真命题. [3分]
若p为真命题,a≤x2恒成立,
∵x∈[1,2],∴a≤1. [6分]
若q为真命题,
即x2+2ax+2-a=0有实根,
Δ=4a2-4(2-a)≥0,
即a≥1或a≤-2, [10分]
综上,所求实数a的取值范围为a≤-2或a=1. [12分]
【突破思维障碍】
含有逻辑联结词的命题要先确定构成命题的(一个或两个)命题的真假,求出参数存在的条件,命题p转化为恒成立问题,命题q转化为方程有实根问题,最后再求出含逻辑联结词的命题成立的条件.若直接求p成立的条件困难,可转化成求綈p成立的条件,然后取补集.
【易错点剖析】
“p且q”为真是全真则真,要区别“p或q”为真是一真则真,命题q就是方程x2+2ax+2-a=0有实根,所以Δ≥0.不是找一个x0使方程成立.
1.逻辑联结词“或”“且”“非”的含义的理解.
(1)“或”与日常生活用语中的“或”意义有所不同,日常用语“或”带有“不可兼有”的意思,如工作或休息,而逻辑联结词“或”含有“同时兼有”的意思,如x<6或x>9.
(2)命题“非p”就是对命题“p”的否定,即对命题结论的否定;否命题是四种命题中的一种,是对原命题条件和结论的同时否定.
2.判断复合命题的真假,要首先确定复合命题的构成形式,再指出其中简单命题的真假,最后根据真值表判断.
3.全称命题“∀x∈M,p(x)”的否定是一个特称命题“∃x∈M,綈p(x)”,
特称命题“∃x∈M,p(x)”的否定是一个全称命题“∀x∈M,綈p(x)”.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011•宣城模拟)已知命题p:∃x∈R,x2-3x+3≤0,则()
A.綈p:∃x∈R,x2-3x+3>0,且綈p为真命题
B.綈p:∃x∈R,x2-3x+3>0,且綈p为假命题
C.綈p:∀x∈R,x2-3x+3>0,且綈p为真命题
D.綈p:∀x∈R,x2-3x+3>0,且綈p为假命题
答案C
解析命题p是一个特称命题,它的否定綈p:对所有的x∈R,都有x2-3x+3>0为真.故答案为C.命题的否定要否定量词,即全称量词的否定为存在量词,存在量词的否定为全称量词,而且要否定结论.
2.已知命题p:∀x∈R,ax2+2x+3>0,如果命题綈p是真命题,那么实数a的取值范围是()
A.a<13 B.a≤13
C.0
答案B
解析∵命题綈p是真命题,∴命题p是假命题,而当命题p是真命题时,不等式ax2+2x+3>0对一切x∈R恒成立,这时应有a>0,Δ=4-12a<0,解得a>13.因此当命题p是假命题,即命题綈p是真命题时,
实数a的范围是a≤13.
3.(2011•龙岩月考)已知条件p:|x+1|>2,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围是()
A.a≥1 B.a≤1
C.a≥-3 D.a≤-3
答案A
解析 綈p是綈q的充分不必要条件的等价命题为q是p的充分不必要条件,即q⇒p,而p q,条件p化简为x>1或x<-3,所以当a≥1时,q⇒p.
4.已知命题“∀a,b∈R,如果ab>0,则a>0”,则它的否命题是()
A.∀a,b∈R,如果ab<0,则a<0
B.∀a,b∈R,如果ab≤0,则a≤0
C.∃a,b∈R,如果ab<0,则a<0
D.∃a,b∈R,如果ab≤0,则a≤0
答案B
解析∀a,b∈R是大前堤,在否命题中也不变,又因ab>0,a>0的否定分别为ab≤0,a≤0,故选B.
5.(2011•宁波调研)下列有关命题的说法正确的是()
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1<0”
D.命题“若x=y,则sin x=sin y”的逆否命题为真命题
答案D
二、填空题(每小题4分,共12分)
6.(2010•安徽)命题“对∀x∈R,|x-2|+|x-4|>3”的否定是______________.
答案∃x∈R,|x-2|+|x-4|≤3
7.已知命题p:“∀x∈R,∃m∈R使4x-2x+1+m=0”,若命题綈p是假命题,则实数m的取值范围为__________.
答案m≤1
解析命题綈p是假命题,即命题p是真命题,也就是关于x的方程4x-2x+1+m=0有
实数解,即m=-(4x-2x+1),令f(x)=-(4x-2x+1),由于f(x)=-(2x-1)2+1,所以当x-Ray
时f(x)≤1,因此实数m的取值范围是m≤1.
8.(2010•安徽)命题“存在x∈R,使得x2+2x+5=0”的否定是
______________________.
答案对任意x∈R,都有x2+2x+5≠0
解析因特称命题的否定是全称命题,所以得:对任意x∈R,都有x2+2x+5≠0.
三、解答题(共38分)
9.(12分)分别指出由下列命题构成的“p∨q”“p∧q”“綈p”形式的命题的真假.
(1)p:4∈{2,3},q:2∈{2,3};
(2)p:1是奇数,q:1是质数;
(3)p:0∈∅,q:{x|x2-3x-5<0}⊆R;
(4)p:5≤5,q:27不是质数.
解(1)∵p是假命题,q是真命题,
∴p∨q为真命题,p∧q为假命题,
綈p为真命题.(3分)
(2)∵1是奇数,
∴p是真命题.
又∵1不是质数,
∴q是假命题.
因此p∨q为真命题,p∧q为假命题,綈p为假命题.(6分)
(3)∵0 ∅,∴p为假命题.
又∵x2-3x-5<0⇒3-292
∴{x|x2-3x-5<0}={x|3-292
∴q为真命题.
∴p∨q为真命题,p∧q为假命题,綈p为真命题.(9分)
(4)显然p:5≤5为真命题,q:27不是质数为真命题,
∴p∨q为真命题,p∧q为真命题,綈p为假命题.
(12分)
10.(12分)(2011•锦州月考)命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.
解设g(x)=x2+2ax+4,
由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,所以函数g(x)的图象开口向上且与x轴没有交点,
故Δ=4a2-16<0,∴-2
又∵函数f(x)=(3-2a)x是增函数,
∴3-2a>1,∴a<1.(6分)
又由于p或q为真,p且q为假,可知p和q一真一假.
(1)若p真q假,则-2
∴1≤a<2;(8分)
(2)若p假q真,
则a≤-2,或a≥2,a<1,∴a≤-2.(10分)
综上可知,所求实数a的取值范围为
1≤a<2,或a≤-2.(12分)
11.(14分)已知p:x2+mx+1=0有两个不等的负根,q:4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求m的取值范围.
解p:x2+mx+1=0有两个不等的负根⇔Δ1=m2-4>0-m<0⇔m>2.(3分)
q:4x2+4(m-2)x+1=0无实根.
⇔Δ2=16(m-2)2-16<0⇔1
因为p或q为真,p且q为假,所以p与q的真值相反.
①当p真且q假时,有m>2m≤1或m≥3
⇒m≥3;(10分)
②当p假且q真时,有m≤21
综上可知,m的取值范围为{m|1
最新高中数学教学教案模板通用
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。
数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。
二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。
2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。
三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。
2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。
四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)
第1单元集合(10学时)
第2单元不等式(8学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第10单元概率与统计初步(16学时)
2.职业模块
第2单元坐标变换与参数方程(12学时)
高中数学选修1-1《导数在研究函数中的应用》教案
目的要求:(1)弄清函数的单调性与导数之间的关系
(2)函数的单调性的判别方法;注意知识建构
(3)利用导数求函数单调区间的步骤
(4)培养学生数形结合的能力。识图和画图。
重点难点:函数单调性的判别方法是本节的重点,求函数的单调区间是本节的重点和难点。
教学内容:liuxue86.com
导数作为函数的变化率刻画了函数变化的趋势(上升或下降的陡峭程度),而函数
的单调性也是对函数变化趋势的一种刻画,回忆:什么是增函数,减函数,增区间,减区间。
思考:导数与函数的单调性有什么联系?
函数的单调性的规律:
思考:试结合函数 进行思考:如果 在某区间上单调递增,那么在该区间上必有 吗?
例1. 确定函数 在那个区间上是增函数,哪个区间上是减函数。
例2. 确定函数 在那些区间上是增函数?
例3. 确定函数 的单调减区间。
巩固:
1.确定下列函数的单调区间:
2.讨论函数 的单调性:
(1)
小结:函数单调性的判定方法,函数的单调性区间的求法。
作业:
1.设 ,则 的单调减区间是
2.函数 的单调递增区间为
3.二次函数 在 上单调递增,则实数a的取值范围是
4.在下列结论中,正确的结论共有: ( )
①单调增函数的导函数也是增函数 ②单调减函数的导函数也是减函数
③单调函数的导函数也是单调函数 ④导函数是单调的,则原函数也是单调的
A.0个 B.2个 C.3个 D.4个
5.若函数 则 的单调递减区间为
单调递增区间为
6.已知函数 在区间 上为减函数,则m的取值范围是
7.求函数 的递增区间和递减区间。
8.确定函数y= 的单调区间.
9.如果函数 在R上递增,求a的取值范围。
§1.3.1单调性(2)
目的要求:(1)巩固利用导数求函数的单调区间
(2)利用导数证明函数的单调性
(3)利用单调性研究参数的范围
(4)培养学生数形结合、分类讨论的能力,养成良好的分析问题解决问题的能力
重点难点:利用图像及单调性区间研究参数的范围是本节的重点难点
教学内容:
1.回顾 函数的导数与单调性之间的关系
2.板演 求下列函数得单调区间:
频道小编推荐:
频道小编推荐:
高中数学选修1-1《变化率与导数》教案
教学准备
1. 教学目标
(1)理解平均变化率的概念.
(2)了解瞬时速度、瞬时变化率、的概念.
(3)理解导数的概念
(4)会求函数在某点的导数或瞬时变化率.
2. 教学重点/难点
教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解
教学难点:会求简单函数y=f(x)在x=x0处的导数
3. 教学用具
多媒体、板书
4. 标签
教学过程
一、创设情景、引入课题
【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。
【板演/PPT】
【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系
h(t)=-4.9t2+6.5t+10.
如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
【板演/PPT】
让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。
【设计意图】自然进入课题内容。
二、新知探究
[1]变化率问题
【合作探究】
探究1 气球膨胀率
【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是
如果将半径r表示为体积V的函数,那么
【板演/PPT】
【活动】
【分析】
当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为
0.62>0.16
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少?
解析:
探究2 高台跳水
【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.
如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
(请计算)
【板演/PPT】
【生】学生举手回答
【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。
【师】解析:h(t)=-4.9t2+6.5t+10
【设计意图】两个问题由易到难,让学生一步一个台阶。为引入变化率的概念以及加深对变化率概念的理解服务。
探究3 计算运动员在
这段时间里的平均速度,并思考下面的问题:
(1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有什么问题吗?
【板演/PPT】
【生】学生举手回答
【师】在高台跳水运动中,平均速度不能准确反映他在这段时间里运动状态.
【活动】师生共同归纳出结论
平均变化率:
上述两个问题中的函数关系用y=f(x)表示,那么问题中的变化率可用式子
我们把这个式子称为函数y=f(x)从x1到x2的平均变化率.
习惯上用Δx=x2-x1,Δy=f(x2)-f(x1)
这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2
同样Δy=f(x2)-f(x1),于是,平均变化率可以表示为:
【几何意义】观察函数f(x)的图象,平均变化率的几何意义是什么?
探究2 当Δt趋近于0时,平均速度有什么变化趋势?
从2s到(2+△t)s这段时间内平均速度
当△ t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的一边趋近于2时, 平均速度都趋近与一个确定的值 –13.1.
从物理的角度看, 时间间隔 |△t |无限变小时, 平均速度就无限趋近于 t = 2时的瞬时速度. 因此, 运动员在 t = 2 时的瞬时速度是 –13.1 m/s.
为了表述方便,我们用xx表示“当t =2, △t趋近于0时, 平均速度 趋近于确定值– 13.1”.
【瞬时速度】
我们用
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值-13.1”.
局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。那么,运动员在某一时刻 的瞬时速度?
【设计意图】让学生体会由平均速度到瞬时速度的逼近思想:△t越小,V越接近于t=2秒时的瞬时速度。
探究3:
(1).运动员在某一时刻 t0 的瞬时速度怎样表示?
(2).函数f(x)在 x = x0处的瞬时变化率怎样表示?
导数的概念:
一般地,函数 y = f (x)在 x = x0 处的瞬时变化率是
称为函数 y = f(x) 在 x = x0 处的导数, 记作
或,
【总结提升】
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
[3]例题讲解
例题1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果第 x h时, 原油的温度(单位: )为 y=f (x) = x2–7x+15 ( 0≤x≤8 ) . 计算第2h与第6h时, 原油温度的瞬时变化率, 并说明它们的意义.
解: 在第2h和第6h时, 原油温度的瞬时变化率就是
在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5. 它说明在第2h附近, 原油温度大约以3 /h的速率下降; 在第6h附近,原油温度大约以5 /h的速率上升.
[4]本节课知识总结
1.函数的平均变化率
2.求函数的平均变化率的步骤:
(1)求函数的增量Δy=f(x2)-f(x1)
(2)计算平均变化率
3、求物体运动的瞬时速度:
(1)求位移增量Δs=s(t+Δt)-s(t)
(2)求平均速度
(3)求极限
4、由导数的定义可得求导数的一般步骤:
(1)求函数的增量Δy=f(x0+Δt)-f(x0
)
(2))平均变化率
(3)求极限
三、复习总结和作业布置
[1] 课堂练习
1.函数y=f(x)的自变量x由x0改变到x0+Δx时,函数值的改变量Δy为 ( ) A.f(x0+Δx)B.f(x0)+Δx
C.f(x0)·Δx
D.f(x0+Δx)-f(x0)
2.若一质点按规律s=8+t2运动,则在时间段2~2.1中,平均速度是 ( ) A.4 B.4.1
C.0.41 D.-1.1 3.求y=x2在x=x0附近的平均速度。
4.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
课堂练习【参考答案】
1. D
解析:分别写出x=x0和x=x0+Δx对应的函数值f(x0)和f(x0+Δx),两式相减,就得到了函数值的改变量Δy=f(x0+Δx)-f(x0),故应选D.
2. B
解析:
3.解析:
频道小编推荐:
频道小编推荐:
高中数学选修1-2《数系的扩充和复数的概念》教案
教学准备
教学目标
知识与技能
1、了解数系扩充的过程及引入复数的需要
2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的充要条件
过程与方法
1、通过数系扩充的介绍,让学生体会数系扩充的一般规律
2、通过具体到抽象的过程,让学生形成复数的一般形式
情感态度与价值观
1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思维的作用
2、体会类比、分类讨论、等价转化的数学思想方法
教学重难点
重点:引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件
难点:虚数单位i的引进和复数的概念
教学过程
(一)问题引入
事实上在实数范围内x和y确实不存在?为什么会这样呢?假设x和y是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》
(二)回顾数系的扩充历程
师:其实对于这种“数不够用”的情况,我们并不陌生。大家记得吗?从小学到现在,我们一直在经历着数的不断扩充。现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用”的问题的。
(三)类比,引入新数,将实数集扩充
1、类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法
生:引入新数,使得平方为负数
师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子引入那么多,只要引入平方为多少就行呢?
2、历史重现:
3、探究复数的一般形式:
(四)新的数集复数集
1.复数的定义(略)
2.复数的应用:复数在数学、力学、电学及其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,是进一步学习数学的基础。
(五)复数的分类
(六)复数相等的充要条件
复数相等的充要条件可以把复数相等的问题转化为求方程组的解的问题,是一种转化的思想。
课后小结
1、由于实际的需要,我们总结数的三次扩充过程的规律,运用类比的方法,我们引进了新的数i,并将实数集扩充到了复数集,认识到了复数的代数形式,并讨论了复数的分类及复数相等的充要条件,并且利用相等的条件把复数问题转化为方程组的解的问题
2、那么,复数究竟是什么东西呢?能不能像实数一样在现实中找到它的影子呢?别急,我们的探索脚步并不会停止下去,这是我们下次将要探索的内容。
课后习题
1、习题3.1 A组第1、2题
2、课后探究复数能不能比较大小,为什么?(可查资料)
高中数学选修1-1《双曲线》教案
教学准备
教学目标
1、熟练掌握曲线的方程和方程的曲线概念;
2、掌握坐标法和解析几何的概念
3、掌握根据已知条件求平面曲线方程的基本步骤;
4、学会根据已知条件求简单的平面曲线的方程。
5、学会判断曲线和方程的关系。
教学重难点
掌握求平面曲线方程的一般步骤。
教学过程
教学过程:
一、 复习过程
1、 复习曲线的方程和方程的曲线的概念;
2、 复习巩固练习:
(1) 设A(2,0)、B(0,2),能否说线段AB的方程为x+y-2=0?
(2) 方程x2-y2=0表示的图形是。
二、 讲授新课
1、 坐标法:借助坐标系研究几何图形的方法。
2、 解析几何:用坐标法研究几何图形的知识所形成的一门学科。
即用代数的方法来研究几何问题的一门数学学科。
3、 平面解析几何研究的主要问题:
(1) 根据已知条件,求出表示平面曲线的方程。
(2) 通过方程,研究平面曲线的性质。
4、 探究求曲线的方程的一般步骤。
例1、 设A、B两点的坐标是A(-1,-1)、(3,7),求线段AB的垂直平分线的方程。
例2、 点M与两条互相垂直的直线的距离的积是常数k(k>0),求点M的轨迹方程。
解:取已知的两条互相垂直的直线为坐标轴,建立直角坐标系如图所示。
设M的坐标为(x,y),点M的轨迹就是与坐标轴的距离的积等于常数k的点的集合为 P={M||MR|o|MQ|=k} 其中Q、R分别是点M到x轴、y轴的垂线的垂足。
因为点M到x轴、y轴的的距离分别是它的纵坐标和横坐标的绝对值,所以条件|MR|o|MQ|=k可以写成
|x|o|y|=k
即xy=k ①
我们证明方程①是所求轨迹的方程。
(1) 由求方程的过程可知,曲线上的点的坐标都是方程①的解;
(2) 设点M1的坐标(x1,y1)是方程①的解,那么x1y1=k
即|x1|o|y1|=k
而|x1|、|y1|正好是点M1到纵轴、横轴的距离,因此点M1到这两条直线的距离的积是常数k,点M1是曲线上的点。
由(1)、(2)可知,方程 ①是所求轨迹的方程。
5、 总结求曲线的方程的一般步骤:
(1) 建立适当的坐标系,用有序实数对(x,y)表求曲线上任意一点M的坐标;(建系设点)
(2) 写出适合条件p的点M的集合;(找等量关系)
(3) 用坐标表示条件p(M),列出方程f(x,y)=0;(列方程)
(4) 化简方程f(x,y)=0;
(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。(一般情况下可省略)
例3、已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差是2,求这条曲线的方程。(y=x2 且x≠0)
一、 课堂练习:
一个动点P与两个定点A、B的距离的平方和为122,|AB|=10,求动点P的轨迹方程。
解析:以AB所在直线为x轴,AB的垂直平分线为y轴建立直角坐标系。……所求动点P的轨迹方程是。
以AB所在直线为x轴,以A点为原点建立直角坐标系。……所求动点P的轨迹方程是
二、 课堂总结:
求曲线方程的一般步骤。
五、布置作业:习题7.6:3、4、5、6。
频道小编推荐:
频道小编推荐:
高中数学教学提升范文
一、备课的有效性
教师积极备课,分析教学内容,准确把握教学过程中的重点难点,能更好地帮助学生掌握知识、应用知识,获得技能技巧。当然,备课的有效性也是教师、学生顺利展开课堂活动和教学内容的关键。当然,在备课时要注意钻研教材,充分了解,准确把握国家统一规定的教学标准,而且要了解学生的性格特征、知识掌握情况,以便因材施教,有针对性地教育学生。教师在备课过程中要重视过程与结果的关系,切勿只看重结果而忽视了过程。总之,备课的有效性是展开有效性教学的关键所在。
二、教学过程的有效性
教学过程是指在课堂上统一教授学生了解知识、了解教材内容的过程,是教学的关键环节,更是教学的核心。因此,保证教学过程的有效性是十分必要的。教师要在课堂上积极引导学生,采用灵活的教学方法保证课堂活动的顺利进行,使学生有足够的兴趣学习高中的数学知识,同时达到更好的效果。其次,构建和谐良好、民主的课堂气氛是学生自由讨论、自由学习的关键,也是提高课堂教学的有效性的关键。最后,一些辅助教学的工具,例如多媒体、图片等教具对于激发学生学习兴趣,发展综合素质有着重要意义,这是提高高中数学教学有效性的重要内容。
三、课后作业的有效性
课后作业是及时帮助学生对数学学习的知识进行反馈、吸收、理解、复习的重要过程。因此。课后作业的有效性也能有效提高高中学生的数学成绩。但是,教师在布置作业时一定要避免题海战术、避免让学生多做一些无意义的练习。其次,教师布置课后作业时一定要能激发学生完成的兴趣,激发学生的求知欲,要密切联系生活实际,同时紧密联系教材内容。最后,教师布置作业时要难度适中。难度过大会使学生感到寸步难行、得不偿失,如果难度过小会使学生洋洋得意,不愿意深层次地挖掘更为具体、深入的内容。同时,教师有条不紊的教学计划和作业布置也会感染学生,帮助学生有条理、清晰地掌握教材的内容,并及时地加以巩固。这也是教师布置作业时所必须注意的重要内容。由此可见,教师布置作业时的一系列技巧,只有在教师准确把握这些布置作业的技巧、合理引导的前提下,才能在真正意义上保证数学教学的有效性。提高高中数学教学的有效性是需要我们一点一滴的努力和合理的方法的。因此,我们应以明确的目标、合理的教学方法使数学创新教学循序渐进地进行,有效提高学生的数学成绩、提高学生的创新思维以及合作意识。这是我们数学有效性教学的关键,更是我们需要努力的关键所在。